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A novel time-delayed acceleration feedback method of controlling friction-induced

instability is proposed. A single degree-of-freedom mechanical oscillator on a moving

belt represents the basic friction-driven system. The control force is synthesized based

on an infinite weighted sum of the acceleration of the vibrating mass measured at

regular intervals in the past. Such a control force can be effectively produced by the

recursive summation of the time-delayed acceleration and the time-delayed control

signal, and hence the technique is termed as the recursive time-delayed acceleration

feedback control. The local stability analysis of the equilibrium reveals nontrivial and

beneficial influences of the recursive gain on the system performance. Robustness of the

control is shown to improve with the increasing value of the recursive gain. A multiple

time scale based analysis of the system elucidates the role of the recursive gain in

enhancing the amount of dissipation produced by the control action. The influences of

the time-delay and the control gain on the optimized performance of the system are also

discussed. Numerical simulations of the system equations corroborate the analytical

results. The present method is believed to be applicable to any self-excited system

having a large degree of instability that is not removable by an ordinary time-delayed

feedback.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Friction-induced self-excited vibration is a common phenomenon in mechanical and electromechanical systems. In
most systems, friction-induced vibrations are highly undesirable. For example, self-excited vibration in mechanical brakes
causes noise related discomfort. Another example is the controlled positioning systems that have now become an integral
part of a large number of industrial production systems as well as consumer electronics products. Friction often causes high
level of positioning inaccuracies by inducing self-excited oscillations around the desired position. Thus, it is not surprising
that researchers, over the past few years, have put serious efforts towards understanding the phenomena and finding
suitable means of controlling such unwanted oscillations.

Researchers have identified three major mechanisms of friction-driven oscillations. The most common reason of the
friction-induced instability is attributed to the velocity-weakening characteristics of the friction force, which is also known
as the Stribeck effect. Other widely studied mechanisms are mode-coupling and sprag-slip instabilities. Elaborate and
seminal reviews of the previous research on this topic are available in [1,2].
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e).

www.sciencedirect.com/science/journal/yjsvi
www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.07.028
mailto:shy@mech.becs.ac.in


ARTICLE IN PRESS

S. Chatterjee, P. Mahata / Journal of Sound and Vibration 328 (2009) 9–2810
Literature on controlling friction-induced vibrations is vast. Various active and passive methods of controlling friction-
induced oscillations are proposed in the literature [3–8]. Various methods including dynamic vibration absorbers, linear
and nonlinear control of the tangential and the normal forces and high-frequency excitations, etc. are discussed. In recent
times, many researchers have investigated active control of vibrations using time-delayed state (full or partial) feedback
[9–12]. Atay [13,14], Maccari [15–17] and Li et al. [18] discuss the use of time-delayed state feedback method in controlling
free, forced and parametric vibrations of the Van der Pol oscillator. Studies on the use of time-delayed feedback in
controlling friction-induced instabilities and oscillations are rather limited. Elmer [19] proposes a method of controlling
friction-induced oscillations by normal load modulation based on the time-delayed state feedback. His method is very
similar to that proposed by Pyragas [20]. Das and Mallik [21] consider the time-delayed PD feedback control of the forced
vibration of a friction-driven system. Here, control force acts in the slipping direction. Refs. [19,21] consider only the
Stribeck type instability. Chatterjee [22] has discussed the Pyragas type [20] time-delayed feedback control of different
types of friction-induced instabilities, namely (1) Stribeck instability governed by velocity-weakening characteristics of
friction force, (2) mode-coupling instability, and (3) sprag-slip instability. Recently, Chatterjee and Mahata [23] have
explored the efficacy of a time-delayed vibration absorber for controlling the Stribeck instability and the associated self-
excited oscillation of a friction-driven system.

The present paper deals with the efficacy of a recursive time-delayed controller in suppressing the self-excited vibration
of a mechanical oscillator driven by the velocity-weakening friction force. A spring supported mass on a moving belt
represents an archetypal model of the friction-driven self-excited system. The control force is considered to act directly on
the vibrating mass in the direction of slipping. The control signal, in the proposed strategy, is determined by an infinite,
weighted sum of the acceleration of the vibrating system measured at regular time intervals in the past. The basic idea is
adapted from the concept of extended time-delay auto synchronization (ETDAS) control strategy originally proposed by
Socolar et al. [24] for stabilizing the unstable periodic orbits embedded in a chaotic attractor. However, the full potential of
this class of control strategy in mitigating resonant vibrations of flexible mechanical and structural components have been
recently explored by Chatterjee [25]. Because the control signal can also be determined recursively by the weighted sum of
the time-delayed acceleration and the time-delayed control signal, the proposed strategy is pertinently called hereafter as
the recursive time-delayed feedback control (RTDFC). A mathematical model of the system is developed. The local stability of
the equilibrium of the system is studied based on the linearized model around the equilibrium. The dissipative effects of
the recursive feedback are analyzed using the multiple time scale method. Robustness of the stability is also discussed.
Formulae for the maximum dissipation and robustness of the control are derived. The characteristic behaviour of the
system is explained in light of the dominant poles of the system. Direct numerical simulations of the mathematical model
of the system substantiate the theoretical results.
2. Mathematical model

A model of the controlled system is depicted in Fig. 1. The elastic member is represented by a single dof mechanical
oscillator where the mass (M) is suspended by a spring of stiffness K from a fixed support. The mass is placed upon a belt
that is moving with a constant velocity Vb. The control force (Fc) and the friction force (F) are acting along the direction of
slipping. Although some structural damping, however small, is present in any structural system, its effect can be neglected
in the mathematical modeling when the primary objective is to analyze the stabilizing effect of the control on the system
dynamics because structural damping always improves the stability condition. If X is the displacement of the mass at any
instant of time t, then the equation of motion of the system reads as

M €X þ KX ¼ FðVb �
_XÞ þ Fc , (1)

where the ‘overdot’ denotes differentiation with respect to the time variable t.
Fig. 1. Mathematical model of the controlled system.
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The friction force (F) between the primary mass and the belt is considered to follow a velocity-weakening characteristic
best illustrated in Fig. 2. Various functional forms have been proposed in the literature for mathematically expressing this
typical velocity dependence of the friction force. The polynomial representation with up to third order term is
mathematically more amenable and widely used in the literature. However the present paper considers, an exponential
model of the velocity-weakening friction characteristic as proposed by Hinrichs et al. [26]. The exponential model, in
comparison to the polynomial model, goes a long way in explaining the experimentally observed complex dynamics arising
in many friction-driven systems [27]. The exponential model of the friction force used here is expressed as

FðvÞ ¼ c�vþ N0ðmþDme�a�jvjÞ tanhðb�vÞ, (2)

where v (here v ¼ Vb �
_X) is the relative sliding velocity and c* is the viscous component of the friction force. m is the

minimum kinetic friction coefficient and Dm is the difference between the static friction coefficient and the minimum
kinetic friction coefficient. N0 is the normal load and a* is a model parameter that determines the slope of the friction-
velocity curve in the low velocity range. tanh(b*v) is the continuous functional representation of signum function with
b*
b1.

The control force Fc is given by

Fc ¼ KcU, (3)

where Kc is the control gain and U is the control signal. The control law is formulated as the infinite weighted sum of the
acceleration of the mass measured at equal time intervals in the past and is mathematically expressed as

UðtÞ ¼
X1
n¼1

Rn�1 €Xðt � nTnÞ. (4)

Here, T* is the minimum time-delay and R is a real parameter termed as the recursive gain. The value of R is in the range of
�1 to +1. It is noteworthy that R ¼ 0 corresponds to an ordinary time-delayed feedback. As mentioned earlier, the control
law is adapted from the concept of ETDAS [24] and the control signal given by Eq. (4) can be viewed as a special form of
multiple time-delayed feedback with infinite number of commensurate time-delays having monotonically decreasing
weight. However, this particular form with infinite number of terms poses problem in the physical implementation of the
control. Fortunately, an alternative recursive representation of the control signal U exists as shown below

UðtÞ ¼ €Xðt � T�Þ þ RUðt � T�Þ. (5)

The above recursive form renders the control law physically realizable. The control signal having the recursive form can be
interpreted as the weighted sum of the time-delayed acceleration and the control signal itself. It may also be noted that the
control force becomes trivial after the equilibrium is stabilized.

Eqs. (1)–(5) can be recast in the following non-dimensional form:

€yþ y ¼ f ðv0 � _yÞ þ f c , (6)

where

x0 ¼
N0

Mo2
n

; y ¼
X

x0
; v0 ¼

Vb

onx0
; o0 ¼

ffiffiffiffiffi
K

M

r

Fig. 2. Typical velocity-weakening friction characteristic.
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are the non-dimensional quantities and the ‘overdot’ denotes differentiation with respect to the non-dimensional time
t ¼ o0t.

The non-dimensional control force fc is expressed as:

f c ¼ kcu�, (7)

where kc ¼ Kc=Mo2
n is the non-dimensional control gain and the non-dimensional representation of the control is

u�ðtÞ ¼
X1
n¼1

Rn�1 €yðt� nTÞ ¼ €yðt� TÞ þ Ru�ðt� TÞ, (8)

where T ¼ onT� is the non-dimensional time-delay.
The non-dimensional friction force f is given as

f ¼ cðv0 � _yÞ þ ðmþ Dme�a v0� _yj jÞ tanhðbðv0 � _yÞÞ, (9)

where c ¼ c�=Mon, a ¼ a�onx0, b ¼ b�onx0 are the non-dimensional quantities.
3. Local stability analysis

Detailed stability analysis of the uncontrolled system is available in the literature [4,5,7] and therefore, is avoided here.
It is known that the static equilibrium of the uncontrolled system is unstable, particularly for very low velocities of sliding.
In this section, the local stability of the equilibrium of the controlled system is analyzed. Towards this end, it is pertinent to
assume that the system is vibrating near the equilibrium position. In other words, the mass is always slipping on the belt;
this is possible when the magnitude of the velocity of the mass is always less than the belt velocity i.e., j_yjov0. Thus, the
reversal of the relative velocity of slipping and hence the condition of the stick-slip vibration is precluded.

Substituting €y ¼ _y ¼ 0 into Eq. (6) and noting that the control force fc vanishes at the equilibrium, the equilibrium
position of the mass is obtained as

yeq ¼ mþ Dme�av0 þ cv0. (10)

As v0 is always greater than j_yj and bb1, the argument of the hyperbolic function in Eq. (9) is a large positive quantity and
thus, the hyperbolic term can be closely approximated as unity.

Using the coordinate transformation z ¼ y� yeq, Eqs. (6)–(9) can be recast in the following form:

€zþ z ¼ gðea_z � 1Þ � c_zþ kcu, (11)

where g ¼ Dme�av0 .
Note that the equilibrium of the system given by Eq. (11) is at (0,0). The control signal u is now expressed as

uðtÞ ¼
X1
n¼1

Rn�1 €zðt� nTÞ. (12)

The recursive forms of the above control signals are now rewritten as

uðtÞ ¼ €zðt� TÞ þ Ruðt� TÞ. (13)

The above expression is particularly useful for real-time implementation of the proposed control strategy.
Expanding the nonlinear term in Eq. (11) in the Taylor series and neglecting the higher order terms, one finally obtains

the following linearized equation of motion:

€z� ce _zþ z ¼ kcu, (14)

where ce ¼ ga� c.
Taking the Laplace transform on both sides of Eqs. (13) and (14), yields the following characteristic equation:

PðsÞ � Q ðsÞ e�sT ¼ 0, (15)

where PðsÞ ¼ s2 � cesþ 1, and Q ðsÞ ¼ Ls2 � ceRsþ R, with L ¼ Rþ kc .
The roots of the characteristic equation (Eq. (15)) determine the stability of the equilibrium of the system. On a

switching boundary, Eq. (15) has a pair of purely imaginary roots. Substituting s ¼ jo into Eq. (15) and separating the real
and imaginary parts, one obtains

A11 A12

A21 A22

" #
cosoT

sinoT

� �
¼

B1

B2

( )
, (16a,b)

where A11 ¼ A22 ¼ Lo2 � R, A12 ¼ �A21 ¼ ceRo, B1 ¼ o2 � 1 and B2 ¼ �ceo
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Now, Eq. (16) can be rewritten as:

cosoT

sinoT

� �
¼

A11 A12

A21 A22

" #�1
B1

B2

( )
¼

C1

C2

( )
, (17a,b)

where C1 and C2 are computed in terms of the constants Aij and Bi for i,j ¼ 1,2.
Squaring and adding Eqs. (17a) and (17b) yields

C2
1 þ C2

2 ¼ 1. (18)

Dividing Eq. (17a) by Eq. (17b), yields

tanðoTÞ ¼
C2

C1
. (19)

Simplifying Eq. (18), one obtains the polynomial equation of o

a1o4 þ a2o2 þ a3 ¼ 0, (20)

where a1 ¼ 1� ðRþ kcÞ
2, a2 ¼ ðce � 2Þð1� R2Þ þ 2kcR, a3 ¼ 1� R2.

Eq. (20) has nonnegative real solutions (oc) for different values of the control parameters. The corresponding values of
the critical time-delay (Tc) on the switching boundary are computed from Eq. (19) as

Tc ¼
1

oc
tan�1 C2

C1

� �
þ 2ip

� �
; 8i ¼ 0;1;2; . . . ;1. (21)

It may be noted that the uncontrolled system has a pair of complex conjugate eigenvalues with positive real parts. Thus for
the stability of the equilibrium to switch at the critical values computed above, the eigenvalues must cross the imaginary
axis from the left half s-plane to the right half s-plane or the vice versa. This is possible when the speed of the crossing with
respect to the increasing value of the time-delay is non-trivial. The speed of the crossing of eigenvalues on a switching
boundary is expressed as

Vðoc ; TcÞ ¼ sign Re
ds

dT

				
joc ;Tc

 !" #
, (22)

where

ds

dT
¼

ðLs3 � ceRs2 þ RsÞ e�sT

ce � 2s� fTðLs2 � ceRsþ RÞ þ ðceR� 2LsÞg e�sT
.

The stability characteristic of the equilibrium switches from unstable to stable if Vo0 and from stable to unstable if V40
when T increases past Tc. Since V ¼ 0 signifies non-crossing of the imaginary axis by the eigenvalues, the corresponding
critical values must be neglected for the computation of the stability boundaries.

Before proceeding further, it may be noted the system under consideration is a neutral time-delay system. Therefore, it
is important to know the behaviour of the non-system poles as T goes for 0 to 0+. This is checked by the continuity of the
roots of the characteristic equation at T ¼ 0. For the present problem, the root continuity at T ¼ 0 is guaranteed by the
stability of the following system:

1� ðRþ kcÞ e
�sT ¼ 0. (23)

It is not difficult to show (see Appendix A) that the system (23) is stable for

jRþ kcjo1. (24)

Therefore, stability for any value of the time-delay cannot be achieved when the condition (24) is violated because under
this circumstance, the system has infinite number of unstable poles at T ¼ 0+. However, within the range of the gains as
prescribed by the condition (24), the number of unstable pair of complex poles at T ¼ 0+ is one.

Using Eqs. (21)–(24), the local stability boundaries in the lowest possible range of delays are computed and the
corresponding boundaries are delineated in the planes of control parameters. Figs. 3a and b depict the stability regions in kc

vs. T plane. It is observed that the stability region spreads out in size with the increasing value of the positive recursive gain.
With the increasing value of the recursive gain, the stability region extends both way along the gain axis and shifts towards
the smaller delay region. Fig. 4 depicts the stability boundaries in R vs. T plane. Fig. 5 depicts the stability plots for different
values of the recursive gain and the effective damping ce. It is observed that the region of stability gradually shrinks with
the increasing value of the effective damping ce. However, higher recursive gains can accommodate larger values of ce. Thus,
the robustness of the control increases with the positive recursive gain. A rigorous discussion on the robustness of the
control will be found elsewhere in the paper. An empirical upper bound of the value of ce for which the system can be
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Fig. 3. (a) Regions of local stability of the equilibrium for the acceleration feedback with positive recursive gain. ce ¼ 0.1721. (b) Regions of local stability of

the equilibrium for the acceleration feedback with negative recursive gain. ce ¼ 0.1721.

Fig. 4. Regions of local stability of the equilibrium in R vs. T plane. ce ¼ 0.1721.
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stabilized by the proposed control action is given as

ðceÞ
2
maxo

1

2

1þ 3R

1� R

� �
. (25)

It may be mentioned here that the system is also stable for R ¼ 1 (the upper bound of the recursive gain). The
characteristics of the system at R ¼ 1 is very interesting and calls for a special attention. A separate section will be devoted
to discuss this special case.

From the foregoing analysis, it may be inferred that the recursive gain has a significant effect on the stability
characteristics of the system. It is already understood that the extent of the stability region in the plane of the control
parameters can be modified nontrivially by changing the recursive gain R. A nonlinear analysis presented below will further
reveal significant contributions of the recursive parameter to the performance of the control system.

4. Multiple time scale analysis

In the previous section, it is shown that the time-delay feedback can stabilize the unstable equilibrium of a friction-
driven system. The local stability boundaries are plotted for different parameter values. However, no clue whatsoever
pertaining to the optimum selection of the parameters for the best performance of the system is so far available. In order to
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Fig. 5. Stability plots for different values of the recursive gain and the effective damping ce.
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gain a deeper insight into the basic mechanism of the stabilizing effect of the time-delay feedback, a thorough analysis of
the system is necessary. Intuitively, the time-delay feedback improves the overall damping of the system. However, an
understanding regarding the dependence of the overall damping characteristics of the system on the control parameters is
important from the design point of view. Towards this end, a multiple time scale analysis is employed in this section.

For the successful application of the method of multiple time scales, it is assumed that both the inherent nonlinearity of
the system as well as the control effort are weak. As before, only the near-equilibrium slipping dynamics is taken into the
consternation. Accordingly, Eq. (11) is recast in the following form:

€zþ z ¼ �f ð_zÞ þ �k̃cu, (26)

where kc ¼ �k̃c , 0o�51 and f ð_zÞ is written as:

f ð_zÞ ¼ g̃ðea_z � 1Þ � c̃_z, (27)

where g ¼ �g̃ and c ¼ �c̃.
The control signal u is expressed as

uðtÞ ¼
X1
n¼1

Rn�1 €zðt� nTÞ. (28)

The solution of Eq. (26) can be written in the following form:

zð�; tÞ ¼ z0ðT0; T1; . . .Þ þ �z1ðT0; T1; . . .Þ þ . . . , (29)

where Tn ¼ �nt; n ¼ 0;1;2; . . . :
Substituting the expansion (29) into Eqs. (26)–(28) and separating the �0 and �1 order terms, one obtains

D2
0z0 þ z0 ¼ 0, (30)

D2
0z1 þ z1 ¼ f ð_z0Þ � 2D0D1z0 þ k̃c

X1
n¼1

Rn�1D2
0z0ðt� nTÞ, (31)

where

Dn ¼
q

qTn
; n ¼ 0;1;2; . . . and DiDj ¼

q
qTi

q
qTj

 !
.
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The solution of Eq. (30) is written as

z0 ¼ AðT1Þ sinðT0 þFðT1ÞÞ, (32)

where A(T1) is the amplitude of vibration and FðT1Þ is the phase.
Substituting (32) into Eq. (31), yields

D2
0z1 þ z1 ¼ f ðA cos yÞ þ 2A

dF
dT1

sin y� 2
dA

dT1
cos y� k̃cA

X1
n¼1

Rn�1 sinðy� nTÞ, (33)

where y ¼ T0 þFðT1Þ.
The periodic function f ðA cos yÞ can be expanded in the Fourier series as

f ðA cos yÞ ¼ a0 þ
X1
k¼1

ðak cosðkyÞ þ bk cosðkyÞÞ, (34)

where

a0ðAÞ ¼
1

2p

Z 2p

0
f ðA cos yÞdy,

akðAÞ ¼
1

p

Z 2p

0
f ðA cos yÞ cosðkyÞdy,

bkðAÞ ¼
1

p

Z 2p

0
f ðA cos yÞ sinðkyÞdy.

For the present problem, the single term Fourier expansion of f ðA cos yÞ is

f ðA cos yÞ ¼ ð2g̃I1ðaAÞ � c̃AÞ cos y, (35)

where I1ð:Þ is the modified Bessel’s function of order one.
Substituting (35) into Eq. (32), yields

D2
0z1 þ z1 ¼ 2g̃I1ðaAÞ � c̃A� 2

dA

dT1
þ k̃A

X1
n¼1

Rn�1 sinðnTÞ

" #
cos yþ 2A

dF
dT1
� k̃cA

X1
n¼1

Rn�1 cosðnTÞ

" #
sin y (36)

Removing the secular terms from Eq. (36) gives the following solvability conditions:

2g̃I1ðaAÞ � c̃A� 2
dA

dT1
þ k̃cA

X1
n¼1

Rn�1 sinðnTÞ ¼ 0, (37)

2A
dF
dT1
� k̃cA

X1
n¼1

Rn�1 cosðnTÞ ¼ 0. (38)

From Eqs. (37) and (38) one obtains the slow flow equations for the amplitude and phase as

dA

dt
¼

1

2
2gI1ðaAÞ � cAþ kcASðR; TÞ

 �

, (39)

dF
dt ¼

1

2
kcCðR; TÞ, (40)

where SðR; TÞ ¼
P1

n¼1Rn�1 sinðnTÞ and CðR; TÞ ¼
P1

n¼1Rn�1 cosðnTÞ.
It is not difficult to show that (see Appendix B for details)

SðR; TÞ ¼
sinðTÞ

ð1þ R2Þ � 2R cosðTÞ
, (41)

and

CðR; TÞ ¼
cosðTÞ � R

ð1þ R2Þ � 2R cosðTÞ
. (42)

Linearizing the amplitude equation (Eq. (39)) around the trivial equilibrium, one obtains

dA

dt ¼
1

2
½ðga� cÞ þ kcSðR; TÞ�A. (43)

From Eq. (43) one can obtain the following expression of a measure of the dissipation of the system

d ¼ ds þ dc ¼ �
1
2ðga� cÞ � 1

2kcSðR; TÞ. (44)
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Thus, the trivial equilibrium of the system is stable when d is positive. It may be noted that larger the value of d, more is the
overall damping of the system. As the system damping ds is negative, the damping dc provided by the controller must be
sufficiently positive such that overall damping d40. It is noteworthy that the function S(R,T) is periodic in T. However, the
multiple time scale analysis seems accurate only for some smaller values of the time-delay. Therefore, in the subsequent
discussions the time-delay is assumed to be restricted within the lowest possible range of values. From Eq. (44) it is
understood that dc can be maximized within the stable region of operation by increasing the negative feedback control gain
kc and maximizing S(R,T), which in turn depends on the recursive gain R and the time-delay T. Understanding the
dependence of the functions S(R, T) on R and T is, therefore, important.

From the expression of S(R,T) given in Eq. (41) it is easy to show that for a chosen value of the delay, the maximum value
of S is

max
R
fSðR; TÞg ¼

1

sinðTÞ
for R ¼ cos T . (45)

On the other hand, for a chosen value of the recursive gain R, the maximum value of S is

max
T
fSðR; TÞg ¼

1

1� R2
for T ¼ cos�1 2R

1þ R2

� �
. (46)

From the expressions (45) and (46) it is now clear that S(R,T) can be increased by choosing either R close to unity (|R|o1)
and small time-delay or R close to�1 and the time-delay close to p. However, the second choice is infeasible because of the
system is unstable for this combination of values as evident from the stability plots depicted in Figs. 3–4. The variations of
S(R,T) with T for different values of R shown in Fig. 6 substantiate the above observations. However due to hardware
constraints, using a very small value of the time-delay may be impractical. Under these circumstances, one should select
the minimum possible time-delay and the corresponding best value of the recursive gain R as computed from Eq. (45).

From the expression (41) it is clear that for the ordinary time-delay feedback (which corresponds to the case R ¼ 0), the
maximum value of S is unity and the corresponding time-delay is p/2. However, it is possible to increase the value of S far
beyond unity and theoretically to infinity by the recursive feedback, i.e., for a nontrivial positive value of R. Thus, the
recursive delay feedback can significantly improve the overall damping of the system.

Before proceeding further, it will not be out of place to comment a line or two on the nonlinear stability characteristics
of the trivial equilibrium. Towards this end, the amplitude equation (Eq. (39)) is recast in the following form after
expanding the modified Bessel’s function into the Taylor series around A ¼ 0:

dA

dt ¼ �dAþ
1

16
ga3A3

þ OðA5
Þ. (47)

The trivial equilibrium of the amplitude equation (Eq. (47)) undergoes a Hopf bifurcation at d ¼ 0 and as the coefficient of
the cubic term is positive, the bifurcation is subcritical following which the trivial equilibrium becomes stable and an
unstable limit cycle emerges. Therefore, the local stability of the equilibrium does not guarantee the amplitude death of the
friction-driven, stable limit cycle oscillation. A stable limit cycle can coexist with the stable equilibrium and these two
stable solutions are separated by an unstable limit cycle. Thus, the locally stable equilibrium is not necessarily globally
stable. Therefore, a global stability analysis is warranted.
Fig. 6. Variations of S(R,T) with T.
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5. Robustness analysis

The exact location and the extent of the region of stability in the plane of the control parameters is sensitive to the value
of the effective negative damping ce . It is already observed in Section 3 that the region of stability gradually shrinks with
the increasing value of the effective negative damping generated due to the friction. However in practice, an accurate
estimation of the parameter ce is highly improbable. Thus, it is pertinent to estimate the bound on the variation of the
parameter ce above the nominal that the controlled system can tolerate without loosing its stability. The minimum
perturbation of the parameter ce that the system can endure (before losing stability) is the measure of the robustness of the
control. In principle, appropriate choices of the control and the design parameters maximize the robustness. The basic
philosophy of estimating the robustness is briefly outlined below.

A negatively damped mechanical oscillator mathematically represents the near-equilibrium dynamics of the
uncontrolled system. When the control force is added, the overall damping of the system turns positive and thus, the
equilibrium of the controlled system becomes stable. Now the stable control system is again brought on the verge of
instability by perturbing the effective damping of the original uncontrolled system by an amount, say p. Then p is the
measure of the robustness of the controlled system. In what follows, analytical expressions relating the quantity p with the
different control parameters are derived. The optimum characteristics of the robustness of the control are also discussed.

Let p be the perturbation (positive) of the effective damping that will just destabilize the system, which is already
stabilized by the feedback. Then one writes the characteristic equation of the system as

ðs2 � ðce þ pÞsþ 1Þ � ððRþ kcÞs
2 � ðce þ pÞRsþ RÞ e�sT ¼ 0. (48)

It is known that on the stability boundary the system is marginally stable, i.e., s ¼ jo. Substituting s ¼ jo into Eq. (48) and
separating the real and imaginary parts, one obtains the following two equations after some algebraic manipulations:

cos oT ¼
1�o2 � RðRo2 � Rþo2kcÞ

2R� 2Ro2 � kco2
¼ f ðoÞ, (49)

and

p ¼
�ceo� ðRðo2 � 1Þ þo2kcÞ sin oT þ ceoR cos oT

oð1� R cos oTÞ
¼ hðo; TÞ. (50)

For maximizing the quantity p with respect to the time-delay T, one requires

dp

dT
¼
qh

qT
þ

qh

qo
do
dT
¼ 0. (51)

From Eq. (49), one obtains

do
dT
¼ �

o sin oT

T sin oT þ df
do

(52)

Substituting Eq. (52) into Eq. (51) and using Eq. (49), one finally obtains the following expression of o ¼ om for which p

assumes the maximum value:

om ¼
1� R2

1� ðRþ kcÞ
2

 !1=4

. (53)

The corresponding time-delay T ¼ Tm is expressed as

Tm ¼
1

om
cos�1ff ðomÞg. (54)

Fig. 7 shows the variations of the optimum value of the time-delay (Tm) and the maximum robustness with the recursive
gain for different values of the control gain. The plots are presented in the stable region of operation. It may be observed
from the plots presented in Fig. 7 that the maximum robustness increases and the corresponding optimum time-delay
decreases with the increasing value of R. Interestingly, the maximum value of the robustness is theoretically infinity for
R ¼ 1. These results are qualitatively equivalent to the results discussed in the Section 4 where it is shown that the effective
damping of the control system increases with R approaching unity and the time-delay approaching the corresponding
optimal value. However, the most important observation that may be made from these plots is that the recursive gain has
relatively stronger influence on the robustness than the control gain. Further to this, the stability plots shown in Figs. 3–5
confirm that a higher control gain can be used with a higher value of the recursive gain (positive). Thus, the combined
effects of these two enhance the maximum achievable robustness. These results clearly confirm the usefulness of the
recursive feedback.

The variations of the robustness p with the time-delay for different values of R are plotted in Fig. 8. For the given values
of the control parameters, first Eq. (49) is solved for o and then p is computed from Eq. (50). Due to the transcendental
nature of Eq. (49), multiple solutions of o and p are theoretically possible. However, out of all possible positive values of p
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Fig. 7. Variations of (a) the maximum robustness and (b) the optimum time-delay with the recursive gain. ce ¼ 0.1.

Fig. 8. Variation of robustness p with time-delay. ce ¼ 0.1 and kc ¼ �0.5.
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inside the stable region, the minimum value qualifies as the measure of the robustness. Fortunately, Eq. (49) does not have
multiple solutions within the range of parameter values studied. The similarity between the plots in Fig. 8 and the plots of
S(R,T) vs. T shown in Fig. 6 is a direct evidence of the qualitative concurrence between the results of the Section 4 and that
of the present section.

Fig. 9 shows the maps of the robustness measure in the gain vs. delay plane for the recursive and non-recursive,
acceleration feedback control. A comparison between these two cases clearly demonstrates that the recursive acceleration
feedback is more robust than the non-recursive feedback.
6. System characteristics at R ¼ 1

The Laplace transformation of Eq. (14) gives the controller transfer function as

GcðsÞ ¼
UðsÞ

ZðsÞ
¼

s2

1� Re�sT
. (55)

It is already established that the system is sufficiently stable for smaller values of the time-delay and higher values of the
recursive gain. Under these circumstances, one can substitute the exponential function in Eq. (55) with its first order pade
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Fig. 9. Robustness map. ce ¼ 0.1.
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approximant given as

e�sT ¼
2� sT

2þ sT
. (56)

Substituting Eq. (56) into (55), yields the following expression of controller transfer function

GcðsÞ ¼
UðsÞ

ZðsÞ
¼

s2ð2þ sTÞ

2ð1� RÞ þ ð1þ RÞsT
. (57)

Taking the Laplace transform of Eq. (14) and using (57), yields the following third order characteristic equation:

l3s3 þ l2s2 þ l1sþ l0 ¼ 0, (58)

where

l3 ¼ ð1þ R� kcÞT; l2 ¼ 2ð1� R� kcÞ � ceð1þ RÞT; l1 ¼ ð1þ RÞT � 2ceð1� RÞ; and l0 ¼ 2ð1� RÞ

Now it is easy to see from Eqs. (55) and (58) that one pole of the system becomes zero at R ¼ 1. However, it is also apparent
from Eq. (57) that there is a pole-zero cancellation in the controller transfer function at s ¼ 0; this reduces the effective
order of the system by one. For R ¼ 1, Eq. (57) is rewritten as

GcðsÞ ¼
UðsÞ

ZðsÞ
¼

sð2þ sTÞ

2T
. (59)

Taking the Laplace transform of Eq. (15) and using (59), yields the following second order characteristic equation:

s2 �

ce þ
kc

T

� �

1�
kc

2

� � sþ
1

1�
kc

2

� � ¼ 0. (60)

In light of the above discussions, the region of stability of the system for R ¼ 1 can now be obtained by the method
described in Section 3. Actually, the above method gives the region of marginal stability because there always exists a pole
at the origin. However, as this pole is actually cancelled by a zero of the controller, the marginally stable region obtained by
the above method is actually the stable region. The regions of stability for R ¼ 1 are shown in Fig. 10. Clearly, the lower
threshold of the time-delay for the stable operation is T ¼ 0+. Thus, the system can be stabilized for an infinitesimally small
value of the time-delay.

The approximate second order system described by Eq. (60) elucidates the qualitative characteristics of the system at
R ¼ 1. It is apparent from the coefficient of the s term of Eq. (60) that the degree of stability improves with the decreasing
value of the time-delay. In fact, the degree of stability is inversely proportional to the time-delay. The degree of stability as
well as the damping improves with the gain. However, the natural frequency of the system remains independent of the
time-delay. However, the above analysis seems to be valid only for small values of the control gain.

7. Numerical results and discussions

This section presents some numerical evidences in favour of the analytical results obtained in Sections 4–6. First the
variations of the damping and the natural frequencies of the dominant poles of the linearized system are studied. Then
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Fig. 10. Stability plots for R ¼ 1.

Fig. 11. Movement of the dominant poles in the complex plane with the time-delay. T is varied up to 1. Arrows indicate the direction of the movement of

the poles with the increasing value of the time-delay. ce ¼ 0.1721, R ¼ 0.9, kc ¼ �0.2.
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numerical simulations of the nonlinear system equations are carried out to demonstrate the efficacy of the proposed
control method.

7.1. Damping factor and natural frequency

In Section 4, the variations of the damping and the frequency of oscillations with the time-delay have been discussed.
However, the results are valid only for smaller gains. In this section, the damping and natural frequencies of the dominant
poles of the system are directly computed and hence the results of the Section 4 are extended also to higher gains. The
poles of the system are computed using the quasi-polynomial mapping algorithm given in [28]. The movements of the
dominant poles, the associated damping factors and the natural frequencies with the increasing time-delay are shown in
Figs. 11–14. The corresponding values are listed in Tables 1–4. Characteristic behaviour of the dominant poles of the system
for different values of the control and the recursive gain are discussed below for a specific value of ce (here 0.1721 that
corresponds to the values of the friction model parameters listed in Table 5).

Case 1: Ro1, low gain
For a small gain, a pair of dominant complex pole first reaches a high damping region and then drifts away to a low

damping region. However, the natural frequency of the complex poles gradually increases with the increasing value of the
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Fig. 12. Movement of the dominant poles in the complex plane with the time-delay. T is varied up to 1.2. Arrows indicate the direction of the movement of

the poles with the increasing value of the time-delay. ce ¼ 0.1721, R ¼ 0.9, kc ¼ �1.

Fig. 13. Movement of the dominant poles in the complex plane with the time-delay. T is varied up to 0.6. Arrows indicate the direction of the movement of

the poles with the increasing value of the time-delay. ce ¼ 0.1721, R ¼ 1, kc ¼ �0.2.
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time-delay. Simultaneously a real pole moves towards the dominant complex poles with the increasing value of the time-
delay, but never goes to the right of the dominant complex pole. Thus, it may be concluded that when R is less than unity
and the control gain is small, the damping gradually increases to the maximum value and again decreases with the
increasing value of the time-delay. For this case, the movement of the dominant poles in the complex plane is depicted in
Fig. 11 and the corresponding values are tabulated in Table 1.

Case 2: Ro1, high gain
For a large control gain, a pair of dominant complex poles initially goes towards the higher damping region with the

increasing value of the time-delay and eventually the complex poles disappear giving rise to two dominant real poles, one
moving towards the left and the other towards the imaginary axis. However, a pair of high-frequency complex poles
gradually gains strength with the increasing value of the delay. Thus, the system response remains under-damped for
smaller values of the delay and the damping gradually increases to the maximum value and again decreases with the
increasing value of the time-delay. However, as the real pole goes to the right of the complex poles, the system response for
higher values of the time-delay becomes sluggish and appears to be over-damped. The natural frequency is much less than
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Fig. 14. Movement of the dominant poles in the complex plane with the time-delay. T is varied up to 0.8. Arrows indicate the direction of the movement of

the poles with the increasing value of the time-delay. ce ¼ 0.1721, R ¼ 1, kc ¼ �1.

Table 1
ce ¼ 0.1721, R ¼ 0.9, kc ¼ �0.2.

Time-delay T ¼ 0.05 T ¼ 0.1 T ¼ 0.2 T ¼ 0.3 T ¼ 0.4 T ¼ 0.5 T ¼ 0.7

Dominant �0.03+0.58i �0.08+0.60i �0.22+0.68i �0.25+0.86i �0.18+0.95i �0.13+1.00i �0.07+1.03i

Poles �6.88 �3.19 �1.14 �0.48 �0.31 �0.23 �0.15

Damping factor 0.05 0.13 0.3 0.28 0.18 0.12 0.06

Natural frequency 0.58 0.6 0.71 0.89 0.96 1.01 1.03

Table 2
ce ¼ 0.1721, R ¼ 0.9, kc ¼ �1.

Time-delay T ¼ 0.05 T ¼ 0.3 T ¼ 0.4 T ¼ 0.5 T ¼ 0.7 T ¼ 0.9 T ¼ 1.2

Dominant �0.01+0.30i �0.12+0.28i �0.17+0.26i �0.23+0.23i �0.22 �0.14 �0.09

Poles �0.57 �1.48 0.66+1.64i

Damping factor 0.063 0.4 0.55 0.72 1.11 1.77 0.3749

Natural frequency 0.2 0.31 0.32 0.33 0.36 0.45 1.78

Table 3
ce ¼ 0.1721, R ¼ 1, kc ¼ �0.2.

Time-delay T ¼ 0.05 T ¼ 0.1 T ¼ 0.2 T ¼ 0.3 T ¼ 0.4 T ¼ 0.5

Dominant �0.28 �1.01+0.28i �0.45+0.95i �0.27+1.01i �0.17+1.04i �0.12+1.04i

Poles �3.98

Damping factor 2.01 0.96 0.43 0.26 0.1613 0.11

Natural frequency 1.05 1.05 1.05 1.05 1.05 1.05
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that of the uncontrolled system and increases with the time-delay, particularly in the lower delay region. For this case, the
movement of the dominant poles in the complex plane is depicted in Fig. 12 and the corresponding values are tabulated in
Table 2.

Case 3: R ¼ 1, low gain
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Table 4
ce ¼ 0.1721, R ¼ 1, kc ¼ �1

Time-delay T ¼ 0.05 T ¼ 0.1 T ¼ 0.2 T ¼ 0.3 T ¼ 0.4 T ¼ 0.5 T ¼ 0.6 T ¼ 0.7

Dominant �0.05 �0.1 �0.21 �0.3336 �0.4769 �0.66 �0.93 �1.79+0.36i

Pole(s) �132.02 �57.11 �23.53 �13.3656 �8.5513 �5.73 �3.78

Damping factor 25.7 11.97 5.34 3.26 2.25 1.64 1.25 0.98

Natural frequency 2.57 2.39 2.22 2.09 2.0 1.94 1.87 1.82

Table 5
Parameter values of the friction model used for numerical simulations.

Parameter Numerical value Remark

m 0.2 Friction model parameters

Dm 0.2 ce ¼ 0.1721

a 1.0

v0 0.15

c 0.0
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The dominant poles are real for smaller time-delays and hence the system response is over-damped and sluggish. With
the increasing value of the delay, the most dominant real pole moves away and the other moves towards the imaginary axis
before being coalesced into a pair of dominant complex poles. Thus, the system response becomes under-damped beyond a
particular value of the time-delay. For small gains, the natural frequency appears to have no dependence on the time-delay
and very close to that of the uncontrolled system. For this case, the movement of the dominant poles in the complex plane
is depicted in Fig. 13 and the corresponding numerical values are tabulated in Table 3.

Case 4: R ¼ 1, large gain
The characteristics of the movement of the poles in the complex plane are qualitatively the same as observed in case of

the small gain. Thus, the system response is over-damped for smaller delays and under-damped for larger delays. However,
the critical delay after which the response becomes under-damped is higher in case of larger gain. The natural frequency is
higher than that of the uncontrolled system. The natural frequency of the over-damped system decreases with the
increasing value of the time-delay, but that of the under-damped response remains almost independent of the time-delay.
For this case, the movement of the dominant poles in the complex plane is depicted in Fig. 14 and the corresponding
numerical values are tabulated in Table 4.
7.2. Numerical simulations

The stability analysis discussed hitherto only addresses the local stability of the equilibrium of the system. It is already
mentioned in Section 4 that the Hopf bifurcation taking place on the stability boundary is subcritical in nature. This implies
that stable limit cycle oscillations may coexist with the stable equilibrium even inside the local stability region, particularly
near the stability boundary. The desired global stability of the equilibrium is thus not implied by the local stability.
Therefore, direct numerical simulations of the mathematical model of the system are employed to investigate the global
stability of the equilibrium. Moreover, this section also substantiates some of the major analytical results of the present
article. Towards this end, a MATLAB SIMULINK model of the system is developed based on Eqs. (6)–(10). Simulations are
carried out for the system parameters given in Table 5.

In order to demonstrate the global stability of the system, numerical simulations are carried out from different initial
conditions. The control parameters are chosen inside the local stability boundary as denoted by the point P in Fig. 15. The
corresponding damping factor is 0.72 as read from Table 2. Fig. 16 shows the results of numerical simulations in the phase-
plane. The trajectories starting from different initial conditions converge to the equilibrium; this confirms the global
stability of the equilibrium.

Figs. 17 and 18 depict the numerically simulated time history plot of the oscillator displacement for different values of T.
It is observed that the damping of the system with R ¼ 0.9 (o1) first increases with the time-delay and eventually the
system response becomes over-damped. However, beyond a particular value of the time-delay again under-damped
transient oscillation is observed. However, for R ¼ 1, the system response is over-damped in the lower delay region, and the
response gradually turns under-damped with the increasing value of the time-delay. These results clearly affirm the
conclusions reached in earlier sections of the article.
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Fig. 16. Phase plots generated by numerical simulations. + signs denote initial points.

Fig. 15. Control parameter values used for numerical simulation. P denotes the point where numerical simulations are carried out. R ¼ 0.9.

Fig. 17. Time history plots for different values of the time-delay. R ¼ 0.9, kc ¼ �1.

S. Chatterjee, P. Mahata / Journal of Sound and Vibration 328 (2009) 9–28 25
7.3. Discussions

The above numerical results are presented for a particular value of the negative effective damping present in the
uncontrolled system. However, the results are sufficiently suggestive of the overall qualitative behaviour of the controlled
system. The recursive gain can enhance the system damping to any desired value and thus can control any degree of
instability inherent in the system. For the recursive gain less than unity, the overall damping first increases to the
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Fig. 18. Time history plots for different values of the time-delay. R ¼ 1, kc ¼ �1.
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maximum value (may be over-damped depending upon the parameter values) and then decreases with the increasing
value of the delay. Whereas, for the unity recursive gain, the system damping is large for smaller values of the delay and
decreases with the increasing value of the time-delay. Thus, the conclusions reached in Section 4 for weak control also hold
good for stronger control.
8. Conclusions

The present article proposes a novel method of controlling the friction-induced instability by the recursive time-delayed
acceleration feedback. A single dof mechanical oscillator on a moving belt represents the basic friction-driven system. The
instability inherent in the system is attributed to the velocity-weakening friction characteristic at the belt-mass interface.
The control force is synthesized based on an infinite weighted sum of the acceleration of the vibrating mass measured at
regular intervals in the past. Such a control signal can also be produced by the recursive summation of the time-delayed
acceleration and the time-delayed control signal. The technique is thus termed as the recursive time-delayed acceleration
feedback control.

The non-dimensional mathematical model of the system contains three available control parameters, namely the
control gain, time-delay and the recursive gain. The degree of instability in the friction-driven system is quantified by a
single parameter termed here as the effective negative damping. In case of a trivial recursive gain, the system reduces to an
ordinary time-delayed acceleration feedback control that has been previously studied by several researchers. The local
stability analysis of the equilibrium of the system is performed and the stability regions are delineated in the planes of the
control parameters. It is shown that the recursive feedback can nontrivially modify the stability regions. The stability
boundary spreads out both ways along the control gain axis whereas the lower and the upper thresholds of the time-delay
shift towards the lower delay regions with the increasing value of the positive recursive gain. A higher value of the
recursive gain is required to stabilize an uncontrolled system with a higher degree of instability. An empirical relationship
is proposed to estimate the maximum value of the effective negative damping that can be stabilized by a given recursive
gain. This clearly establishes the usefulness of the recursive feedback.

A multiple time scale based nonlinear analysis elucidates the role of the recursive gain in enhancing the overall damping
effect produced by the control action. It is shown that the overall damping can be increased to any desirable value by
increasing the recursive gain and appropriately selecting the time-delay.

The robustness of the control is also discussed. The robustness is defined as the maximum deviation of the effective
negative damping produced by the friction force over its nominal value that the control system can accommodate without
loosing its stability for a given set of the control parameters. Formula for maximizing the robustness of the control is
derived. It is shown that the robustness of the control can be maximized by increasing the control gain and an appropriate
value of the time-delay. The robustness increases with the increasing value of the recursive gain. The robustness is shown
to assume theoretically infinite value for the unity recursive gain.

A separate section is devoted to analyze the stability of the system for the unity recursive gain. It is shown that for the
unity recursive gain, a system pole is placed at the origin but kept silent by a system zero at the origin provided by
the controller. Due to the pole-zero cancellation, the effective order of the system is reduced by one. It is also shown that in
the limit of small time-delay, the damping produced by the controller varies inversely proportional to the time-delay. Thus,
the damping can theoretically reach an infinitely large value for the unity recursive gain.

Numerical results are presented in support of the above observations. The movements of the dominant poles of the
system in the complex plane with the increasing value of the time-delay are plotted for four different combinations of the
control and the recursive gains. These numerical results confirm that the analytical results for weak control also hold good
for stronger control.

The multiple time scale analysis establishes that the Hopf bifurcations taking place on the local stability boundaries are
subcritical in nature. Thus, the global stability of the equilibrium is not guaranteed inside the local stability region. In order
to analyse the global stability of the equilibrium, the system equations are numerically simulated in MATLAB. For a given
set of the system parameters, direct numerical simulations are run from different initial conditions. With the appropriate
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choices of the control parameters, the responses starting from different initial conditions are observed to settle down to the
equilibrium; this confirms the global stability of the system.

Finally, it may be concluded that an ordinary acceleration feedback control can stabilize only a limited degree of
inherent instability, whereas the recursive control offers an all important flexibility to the designer in choosing an
appropriate set of robust control parameters for stabilizing almost any degree of instability inherent in the system. Though
only a particular example of friction-induced instability has been discussed here, the proposed method is equally
applicable to any self-excited system having a significantly large amount of instability that cannot be removed by an
ordinary time-delayed feedback.

Appendix A

The condition of the delay-independent stability of the system given by Eq. (23) is worked out here. Substituting
s ¼ sþ jo into Eq. (23) and separating the imaginary and the real parts, yields

1� ðRþ kcÞ e
�sT cos oT ¼ 0, (A.1)

and

ðRþ kcÞ e
�sT sin oT ¼ 0. (A.2)

If Eq. (A.2) holds good for any value of T, one can write

oT ¼ np; for n ¼ 0;1;2; . . . (A.3)

Using Eq. (A.3) in Eq. (A.1), one obtains

esT ¼ ð�1ÞnðRþ kcÞ. (A.4)

The system is stable when so0, which implies

jRþ kcjo1. (A.5)

Appendix B

As defined

SðR; TÞ ¼
X1
k¼1

Rk�1 sinðkTÞ, (B.1)

and

CðR; TÞ ¼
X1
k¼1

Rk�1 cosðkTÞ. (B.2)

Define a complex quantity

ZðR; TÞ ¼ CðR; TÞ þ jSðR; TÞ ¼
X1
k¼1

Rk�1fcosðkTÞ þ j sinðkTÞg ¼
1

R

X1
k¼1

RkejkT , (B.3)

where j ¼
ffiffiffiffiffiffiffi
�1
p

.
Let

Z ¼ RejT . (B.4)

Substituting Eq. (B.4) into Eq. (B.3), one obtains for |R|o1

RZðR; TÞ ¼
X1
k¼1

Zk ¼
Z

1� Z
. (B.5)

Equation (B.5) is rewritten as

RZðR; TÞ½1� Z� � Z ¼ 0. (B.6)

Separating the real and imaginary parts of the left hand side expression of Eq. (B.6), yields

R2 sin T Rð1� R cos TÞ

Rð1� R cos TÞ �R2 sin T

" #
SðR; TÞ

CðR; TÞ

( )
¼

R cos T

R sin T

� �
. (B.7)
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Solving Eq. (B.7) for S and C, one obtains

SðR; TÞ ¼
sin T

1þ R2 � 2R cos T
(B.8)

and

CðR; TÞ ¼
cos T � R

1þ R2 � 2R cos T
(B.9)
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